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Definition 

Given a directed graph G with n vertices (1, 2, …, n) and some 
edges, the n-tuple T is a topological ordering of the vertices of 
G if and only if: 
 
I[a] < I[b] where ab is an edge from a to b in G and v ϵ T for all 
v ϵ (1, 2, …, n) 

 
 
( T[ I[k] ] = k for all k in (1, 2, …, n) ) 



Example 
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T = (1, 3, 2, 5, 4, 6)  

Note: there may be multiple topological orderings. 
T = (1, 2, 3, 5, 4, 6) is also valid. 



Practical Example 

A practical example of a topological sorting is a list of tasks 
that needs to be completed with some tasks having to be 
completed first. The tasks would be nodes in a graph. 

Practical example of practical example: 

A cooking recipe. 

You need to crack eggs before you can beat them, you must 
preheat the oven before you put food in it, etc. 

 



Condition 

A topological ordering of a graph is possible if and only if the graph does not contain any 
directed cycles. 
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(A topological ordering of this graph does not exist.) 



Algorithms 

There are 2 main algorithms for finding the topological order 
of a graph: 

1. Kahn’s Algorithm 

2. DFS 



Kahn’s Algorithm 
1. Compute the in-degree of each vertex 

2. Add all of the vertices with an in-degree of 0 onto a queue Q 

3. Remove a vertex V from Q 

4. Increment the counter of visited nodes by 1 

5. Add V onto T where T is the list that will contain the order of the nodes 

6. Decrease the in-degree of all neighbours of V by 1 

7. If a neighbour now has an in-degree of 0, add it to Q 

8. If Q is not empty, go to step 3 

9. If the vertex counter does not equal the total number of vertices, return ERROR 
(the topological ordering does not exist) 

10. Return T 
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Compute the in-degree 
of each vertex. 
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Q = (1, 3) 
T = () 

Put the vertices with 
in-degree onto a 
queue. 
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Q = (3, 2) 
T = (1) 

Add a vertex to T and 
reduce the in-degree 
of its neighbours by 1. 
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Q = (2, 4) 
T = (1, 3) 

Add a vertex to T and 
reduce the in-degree 
of its neighbours by 1. 
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Q = (4) 
T = (1, 3, 2) 

Add a vertex to T and 
reduce the in-degree 
of its neighbours by 1. 
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Q = (5) 
T = (1, 3, 2, 4) 

Add a vertex to T and 
reduce the in-degree 
of its neighbours by 1. 
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Q = (6) 
T = (1, 3, 2, 4, 5) 

Add a vertex to T and 
reduce the in-degree 
of its neighbours by 1. 
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Q = () 
T = (1, 3, 2, 4, 5, 6) 

Return T. 



Pseudocode 

def topological_order(G, n): 
    T = [] 
    in_degree = [0 for i in range(n)] 
    Q = Queue.Queue() 
 
    for v in range(n): 
        in_degree[v] = len(G[v]) 
        if in_degree[v] == 0: 
            Q.put(v) 
    vertex_counter = 0 

(Continued on next slide) 



Pseudocode Continued 
 while not Q.empty(): 

        v = Q.get() 

        vertex_counter += 1 

 

        for neighbour in G[v]: 

            in_degree[neighbour] -= 1 

            if in_degree[neigbour] == 0: 

                Q.put(neighbour) 

        T.append(v) 

 

    if vertex_counter != n: 

        return [] 

 

    return T 



Kahn’s Algorithm 

• Time complexity: O(V + E) 

You go through each vertex once and you check each edge 
once. 

• Space complexity: O(V + E) 

You only need a list containing the vertices and a list 
containing the edges. 



DFS 

1. Add all vertices with an in-degree of 0 onto a list 

2. Take each vertex in the list one at a time 

3. Go to all of it’s neighbours 

4. If it doesn’t have any neighbours that are unvisited, add it onto the 
front of T, mark it as visited and go back 

5. Else, go to Step 3 

6. When all vertices of the graph have been visited, return T 
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T = () 
Q = (1, 3) 

Compute the in-degree 
of each vertex. 
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T = () 
Q = (1, 3) 
Current = 1 

Go to a neighbour. 
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T = (2) 
Q = (1, 3) 
Current = 2 

No unvisited 
neighbours. 
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T = (2) 
Q = (1, 3) 
Current = 1 

Go back. 
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T = (2) 
Q = (1, 3) 
Current = 4 

Go to a neighbour. 
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T = (2) 
Q = (1, 3) 
Current = 4 

Go to a neighbour. 
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T = (2) 
Q = (1, 3) 
Current = 6 

No unvisited 
neighbours. 
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T = (6, 2) 
Q = (1, 3) 
Current = 4 

Go back and go to a 
neighbour. 
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T = (6, 2) 
Q = (1, 3) 
Current = 5 

No unvisited 
neighbours. 
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T = (5, 6, 2) 
Q = (1, 3) 
Current = 4 

Go back. 
No unvisited 
neighbours. 
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T = (4, 5, 6, 2) 
Q = (1, 3) 
Current = 1 

Go back. 
No unvisited 
neighbours 



Visual 

1 

2 

3 

4 

5 

6 

0 

1 

0 2 

2 
2 

T = (1, 4, 5, 6, 2) 
Q = (1, 3) 
Current = 3 

Go to next starting 
vertex. 
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T = (3, 1, 4, 5, 6, 2) 
Q = (1, 3) 

No unvisited 
neighbours. 



Pseudocode 
from collections import deque 

 

def topological_order(G, T, visited, current): 

 

    for neighbour in G[current]: 

        if visited[neighbour]: 

            continue 

 

        topological_order(G, T, visited, neighbour) 

 

    visited[current] = True 

    T.appendleft(current) 

 

  

(Continued on next slide) 



Pseudocode Continued 

T = deque() 

G = [ CONNECTIONS GO HERE ] 

visited = [False for i in range(num)] 

for v in starter_vertices: 

    topological_order(G, T, visited, v) 

  

  



DFS 

• Time complexity: O(V + E) 

You traverse each edge once and you check each vertex once 
to find the in-degree of each vertex. 

• Space complexity: O(V + E) 

You need a list of edges and a few lists of the vertices 
(technically it’s 3V + E) 



Example Problem 

Given a list of lectures that John wants to attend and the prerequisite 
lectures for each lecture, construct a list of the order in which John 
should attend the lectures. 

 

The lectures are vertices of a directed graph, and the prerequisites are 
directed edges of the graph. The topological sorting of the graph 
provides the list that is required. 


